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The Central Dogma of Molecular 
Biology Underlies 
Statistical Analysis

Drawn by Ebbe Sloth Andersen, http://130.225.13.7/dogma.html



Organize Data Types Along the 
Central Dogma

Genetic Marker Data – DNA, 
sequencing instruments, static

Transcript Abundance Data – RNA, 
microarrays, dynamic

Protein and Metabolite Abundance –
peptides, gels and spectrometers, 
dynamic



Introductory Remarks
• Genomics data are mainstream now throughout 

discovery, pre-clin (e.g. tox) and Phases I-IV
• Driving major paradigm shifts towards personalized 

medicine, but major ROIs have been slow coming
• Analysis methods for genetics, transcriptomics, 

proteomics / metabalomics in different stages of 
maturity; have quite different scientific histories.

• Trend towards larger consortium-style projects with 
500-1000+ subjects



Introductory Remarks (continued)
• Tower of Babel:  clinical biostatistics, discovery 

statistics, computer science, bioinformatics, 
biology, chemistry, medicine, PKPD, toxicology 

• Huge number of new papers in stat and 
bioinformatics literature, try Google and Google 
Scholar

• Dire need for sound statistical reasoning, 
interpretation and communication



Ultimate Goals: Understanding and
Prediction

• How do we get there? Numerous competing 
methods

• Definite risk of overfitting due to n << p
• Dimension reduction / variable selection is 

critical
• Honest cross-validation (both within and across 

studies) is essential for generalizability
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Data Structures:  Tall Form
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Data Structures

• Tall form is well-suited for pre-processing, normalization, 
pattern discovery, and row-by-row modeling.  

• Wide form is typical for data mining and keeps all variables 
in one file; allows data types

• Easy to transform from one to the other; both are useful
• Dimensions:

– 10K+ samples
– 1K+ clinical covariates
– SNPs:  Affy 500K SNP chip, 

theoretically 1M+ SNPs
– RNA Expression:  All-Exon Array with 

1M+ features
Proteins: 100K+ peaks from LC MS



Genomics Data Analysis Challenges

• Understanding the Instrumentation
• Data Quality
• Missing Data
• Standardization / Normalization
• Transformations
• Confounding
• Association versus Causation
• n << p Prediction and Cross-Validation



Integrating Data from Clinical, 
Genetics, Microarrays, and 

Proteomics
• Pre-process and clean separately, then join by 

sample ID.
• Basic cross-correlations are a good place to 

start.
• Multivariate perspective is needed.
• Data mining methods are agnostic to  combined 

predictor sets.



Genetic Marker Statistical Work Flow

data input

data exploration and
quality check

test for HWE, plot phenotype distributions,
genotype cell plot, LD plots

test for 
marker-trait
associations

estimate haplotype 
frequencies

test for haplotype-
trait associations

identify significantly associated markers

regression, ANOVA, 
Pearson chi-square, 
mixed models



Genetic Marker Association 
Tests

Binary Trait

Case-Control Association
Haplotype Estimation 

Quantitative Trait

Quantitative Trait Association
Haplotype Trend Regression

Population

Family TDT Quantitative TDT



Example: Alzheimer’s

Simulated mock genetic data based on 31 
individuals – 9 control (Alz 0), 22 affected with 
Alzheimer's (Alz 1).  Later we will subdivide the 
latter class into Incipient, Moderate, and Severe 
cases.

The data contain markers (SNPs) related to 
Alzheimer’s disease. One particular gene which 
has been found involved is APOE or 
apolipoprotein E .



Placeholder slide



Marker Properties



SNP Heat Map

Individuals

SNPs



Assocation Map

APOE Region in Blue Border



Haplotype Trait Assocation



Many Different Technologies for 
Measuring RNA Abundance

Polymerase Chain Reaction, Taqman

Short Oligonucleotide Arrays (Affymetrix)

Two-Color Arrays (long oligos: Agilent, full length 

CDNAs: homemade, various vendors)

Radio Labeling (Clonetech)

Beads (Illumina, Luminex)

Serial Analysis of Gene Expression, SAGE

Chemi-luminescence (Applied Biosystems)

Nanotech

Competition over quality, content, and economics is hot!



Microarray Statistical Work Flow

data input quality control
data plots, correlation,
outliers, pseudo image

normalization

statistical 
modeling

significant genes, predictive models

ANOVA, 
mixed model, 
volcano plots, 
discriminant, 
PLS, mining

combination with biological
knowledge / annotation

experimental design and objectives

incorporation in larger 
contexts, networks, 
databases

heat maps, 
parallel plots, 
clustering, PCA, 
MDSpattern 

discovery



The Importance of Good 
Experimental Design

Blazes best path from association to causality

Especially for two-color arrays, reference designs are typically 
2-4 times less efficient than incomplete blocks / loops.

Be wary of various sources of variation and their nesting, 
including biological and technical replication

Split-plot, incomplete block, fractional factorial designs all very 
relevant and under-utilized. See papers by Gary Churchill, Katie 
Kerr and colleagues.

Sample size and power calculations are possible based on 
standard statistical modeling assumptions.



Microarray Basic Plots

Univariate
Histograms
Box Plots

Bivariate
Correlation Matrix Heat Map
Array Group Correlation (plot replicates against one another)
M-A Plots (“minus” versus “average”)

Multivariate
PCA / Factor Analysis / Biplot
MDS Plot
Parallel Coordinate / Profile Plots
Heat Maps, Dendrograms
Pseudo-Images



Normalization
Univariate

Centering

Match a Few Moments or Quantiles

Nonlinear Regression Alignment / Loess

Fully Align All Quantiles or Ranks

Severity

Multivariate: 
- SVD, Robust SVD (Hawkins and Young)

- Data-mining style normalization for batch effects, 
e.g. PLS and Distance Weighted 
Discrimination (Marron and colleagues)



Normalization: Univariate

Univariate standardization reveals two outlying arrays



Normalization: Multivariate

PCA also show outliers, but in addition reveals segmentation of data 
unrelated to treatment



Analysis Methods

Scores of methods for assessing differentially expressed 
genes

Just as many for predictive modeling / data mining / 
classification

And again as many for pattern discovery / clustering

Detecting significant associations with molecular annotation, 
e.g. enrichment analysis on Gene Ontology categories (e.g
GoStat by Speed and colleagues) or promoter regions

Pathways and inferring genetic networks



Alzheimer’s Example from GEO



Linked Graphics

Note for Bayesian Interpretation of Volcano Plot:  

p-value = 2 times probability sign is wrong



Spike-In Affy Experiment
• Choe et al. (2005) Genome Biology

• 6 Chips (3 Control, 3 Treatment) with every RNA 
concentration known!

• Comparison of numerous algorithms in terms of ROC

• Subtracting MM helps remove cross-hyb effect at low 
end, but 

PM more consistent than PM-MM

• Three interesting clusters in M-A plot of log2(PM) 
corresponding to 

empty, 1-fold, and higher-fold spike ins



Interesting M-A Plots

Log2_PM – log2_MMlog2_PM



Improving Spike-In ROC 
(preliminary unpublished results)



Many Choices for Optimizing ROC

• Response Variable: pm, diff, numerous transformations, 
including log, glog, linlog, symlog, sqrt, symsqrt

• Normalization/standardization:  Global means, medians,  
loess, statistical and spatial models

• Data filtering: Outlying probes, outlying observations, 
before/after/during statistical testing

• Statistical decision rule:  Various parametric and 
nonparametric methods, gene-specific versus pooling across 
replicates and genes



Affy Latin Square ROC

See Chu et al 
(2004) Poster

Some 
explanations on 
next slide



Previous Methods for Affy ROC

• MixModIndi:  Previously described mixed model approach on 
log2(PM) and gene-by-gene model fits.

• MixModPool: Use the same variance component estimates 
for all genes, estimated as the medians from MixModIndi.

• WilcoxComb: Single Mann-Whitney-Wilcoxon rank sum test 
obtained by first subracting probe means and then doing 
gene-by-gene tests. Alternative to “5 out of 9” in MAS5 
algorithm.



Future Directions for Affy
ROC Improvement

• Try other similar data sets (U133 Latin Square from Affy and 
dilution experiment from GeneLogic)

• Calibration 
• Incorporate prior information from probe sequence; 

deconvolute cross-hybridization
• Bivariate Mixed Model (Hsieh et al), models PM and MM as a 

bivariate pair



Future Directions for Affy
ROC Improvement

• Empirical Bayes Mixed Model (Feng et al), shrinks variance 
components using priors obtained from all genes, exploits an 
orthogonalizing transformation based on classical ANOVA

• Redefine ROC in terms of false discovery rate (FDR).
• Papers by Storey and colleagues



Toxicogenomics Example from NCT
• Acetaminophen dose-response study on rat liver 

gene expression
• Four doses (50, 150, 1500, 2000 mg/kg) by three 

times (6, 24, 48 hours), plus dose-time-specific 
control pools = 24 unique conditions, three 
biological reps, two technical reps 

• 72 total two-color microarrays on 6735 genes, 
including dye swaps

• Classical clinical chemistry and histopath
variables, plus some ultrastructural data

• Heinloth et al. (2004) Toxicological Sciences 80: 
193-202.

http://dir.niehs.nih.gov/microarray/datasets/ho
me-pub.htm



Key Points from Heinloth et al.
• Array data provide a wealth of new 

information about acetaminophen-induced 
rat liver gene expression

• Expression changes at low doses can 
serve as precursors to toxicity. 

• Down-regulated genes are involved in 
energy-consuming biochemical pathways.

• Up-regulated genes are involved in energy-
producing biochemical pathways.
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Representation of Mixed Data Types For Analysis
Variables

Selected by mixed linear models Converted to numeric coding 
to facilitate statistical analysis

log transformed

Slide compliments of Pierre Bushel, NIEHS



Microarray
• 2 channel arrays 
• log2 ratios versus controls
• Mixed model results averaged

within animals

Clinical Chemistry
• Serum enzymes of liver injury

Alanine Aminotransferase (ALT), Sorbitol
dehydrogenase (SDH), Aspartate
aminotransferase (AST)

• Serum glucose and cholesterol

• Indicator of renal injury
Urea Nitrogen (BUN) 

• Evaluation of cholestasis (bile flow 
interruption)

Total bile acids, 5’-Nucleotidase, Alkaline 
Phosphatase (ALP)

• Total protein and albumin

Histopathology 
• Topography, site, system
• Morphology
• Severity code
• Chemical (amount, duration)
• Vehicle 
• Route of exposure
• Study type (acute, chronic)

Variables

Slide compliments of Pierre Bushel, NIEHS



ArrayDBMAPSTDMS
ClinChem

SQL + XML + DTD

Abridged MAGE-ML

Data

SAS 
Repository

db Views

Toxicological data for 
Gene Expression Studies

Data Integration Process

Slide compliments of Pierre Bushel, NIEHS



Statistical Workflow
1. Quality check, normalize and filter microarray 

data for statistically significant changes via mixed-
model ANOVA, 6700 -> 444 cDNAs

2. Summarize microarray results to animal level and 
join with ancillary clinical chemistry and histopath
data, remove largely incomplete records -> 30 
animals

3. Use std Euclidean distance (<-> correlation) and 
multidimensional scaling to explore animal and 
molecular feature dimensions.

4. Fit more statistical models to perform rigorous 
inference.



Mixed-Model ANOVA
• Extension of analysis of variance to include fixed 

and random effects.  The latter incorporate a 
Gaussian prior distribution and extend statistical 
inferences to the population of interest. 

• Statistical theory exceptionally well-developed by 
Henderson (1950s), Harville (1970s), and others

• Strong connections to quantitative genetics 
methods, e.g. Cockerham and Weir variance 
component models

• Applied countless times with remarkable success 
in other areas, e.g. animal breeding, agriculture, 
clinical trials, epidemiology, pharmacokinetics, 
spatial statistics, and now tox & molecular biology



Advantages of Mixed-Model ANOVA
• Direct probabilistic modeling of all known sources 

of variability and correlation (experimental, 
biological and technical)

• Straightforward accommodation of complex and 
unbalanced experimental designs

• Provides formal means by which to conduct quality 
control, e.g. automatic filtering of outlying points

• Model produces rich output, including 
simultaneous estimates and standard errors for all 
scientific hypotheses of interest

• Empirical superiority to several other popular 
microarray analysis methods in terms of false 
positive / false negative rates



Side Note on Nonparametric Methods
Advantages: Little to no distributional assumptions on the data, robust

Disadvantages:

1. Less power than parametric methods when the latter are well-chosen

2. Difficulty in handling more complex experimental designs with implied 

covariance dependence structures, e.g. time courses, incomplete blocks, 

intentionally or randomly missing data

3. For small experiments, the number of permutations or ranks are limited 

making sampling distributions too coarse. For large experiments, central 

limit theorem kicks in and normality assumption is reasonable.

4. The validity of the bootstrap is almost always assumed but typically not 

verified.

5. Most genomics data contain an accumulation of numerous small 

laboratory protocol and instrumentation errors -> central limit theorem 

and approximately normal errors



Multidimensional Scaling
• Takes as input a distance matrix and 

produces low-dimensional coordinates (1, 
2, or 3D) that optimally preserve inter-point 
distances.

• Contrast with principal components, which 
creates a projection with maximal variability 
/ separation.

• Aside:  A wide variety of distance metrics 
exist, and scientists should consider their 
appropriateness and devise new ones.



Toxicogenomics Parting Thoughts
Some essential components:

– Good experimental design
– Pre-processing, including quality control, normalization, 

and reduction
– Well-chosen statistical methods 
– Dynamic visualization
– Careful annotation and connection to biochemical 

knowledge

Joining array, histopath, and clinchem data is 
nontrivial but straightforward; analysis is tougher.

RNA profiles are clearly associated with tox
phenotypes and have strong potential for inference 
and prediction.

Significant challenges remain for risk assessment!



ChIP-chip experiment setup: genome-
wide location analysis method

1. Construct yeast strains, each transcription factor (TF) has a 
myc tag.

2. Chromatin immunoprecipitation (ChIP) was used to separate 
promoters bound by tagged TF.

3. Two probes, ChIP and genome control, labeled with Cy3 or 
Cy5, were applied to a microarray chip containing 6279 gene 
promoters.

Lee et al. 2002 Science, 298: 799-804



ChIP-Chip Yeast Example
• 106 transcription factors

• 300 arrays, with 2~4 replicates (mostly 3) for each TF

• 7,200 spots on each array, representing promoters of 
~6,300 genes

• Two channels, Cy3 and Cy5 dye for each spot

• Two probes, IP and WCE, corresponding to IP and 
genome control DNA, completely confounded with dye

• Study design and analysis results using Rosetta Error 
Model described in Lee et al. (2002) 

• Re-analysis in Yu, Chu, Gibson, Wolfinger (2004) SAMG, 
3:1, Article 22



Quality inspection: 3 replicates from 
Zap1

Scatter plot of 3 replicates for Zap1



Scatter plot by block for ZAP1

Block 21 Block 22

Block 25 Block 26



Further visualization: Pseudo image

Array 3997 Array 3998



Removing bad blocks - example of Zap1



Mixed Model Analysis

• Residuals from the normalization model 
were taken as input

• Fit a linear mixed model for each gene

2

,  main effect of TF
, main effect of probe, 1 for IP and 2 for control
, main effect of TF-probe interaction

, array random effect, ~ (0, )

tpa t p a tp tpa

A

r T P A TP

T
P p p
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A A N

μ ε

σ

= + + + + +

= =



Mixed Model Assumptions Check

Verify normal error assumption by looking at 
standardized or studentized residuals from the 
gene-by-gene model fits.

histograms

Q-Q plots

first 4 moments

Can also look at standardized or studentized
empirical BLUPs of chip and channel effects.



Hypothesis Testing
• Goal: for each gene, find if a transcription factor 

Tt significantly binds the promoter of that gene.
• As from the experimental design, promoter 

bound by TF is enriched in the IP probe.
• Form the contrast of the probe-TF interaction 

and do a one-sided test:

0 1 2

1 1 2

:  0
:  0

t t

t t

H TP TP
H TP TP

− <=
− >



Chip Design – Rough Outline
1. “Exon” prediction information compiled from a variety of 

publicly available sources.
2. “Exons” are divided into Probe Selection Regions (PSRs)
3. 4 probe pairs are designed for each PSR (when possible)

– PSR must be >17 nt
4. PSRs are joined into Exon Clusters
5. Exon Clusters are joined into Transcript Clusters

Affymetrix All-Exon Array
Collaboration with Eric Hoffman and Marina Bakay, 
Children’s National Medical Center, PEPR Database

Slide compliments of Eric Hoffman, CNMC



Exon prediction categories used for initial 
prototype design

• EnsGene
– Heterogenous prediction sets that uses protein homology, cDNA 

alignments, and ab inition predictions. This prediction set was generated by 
the Ensembl group

• Genscan
– HMM-based ab initio gene prediction set generated by Chris Burge

• GenscanSubopt
– High-scoring exons which are not in the optimal parse of the genscan HMM. 

This set was also generated by Chris Burge
• Twinscan

– HMM-based gene predictor, similar to genscan, which uses synteny to 
improve predictions. The twinscan predictions were generated by Michael 
Brent

• SLAM
– Paired HMM-based ab initio gene prediction that generates orthologous

predictions in both human and mouse.  Affymetrix internal
• Full-length cDNA, mRNA, and ESTs

– Transcript-derived alignments to the human genome using BLAT

Slide compliments of Eric Hoffman, CNMC



Human exon arrays: An inclusive design 
to discover alternative splicing 

Predictors
• EnsGene 342,843
• GenScan(SubOpt)

326,514
• SLAM 176,759
• TwinScan 191,589
• cDNA/EST 502,019

Transcript
Clusters
266,454

Exon
Cluster

1,032,926

Probe
Selection
Regions

1,440,489
(>17 nt)

Final design includes 1,495,766 probesets
10 million features
Four 49-format arrays, 4pp, 8µ
Divided by chromosome Median length 119 nt

Slide compliments of Eric Hoffman, CNMC



Version 2.0 Target Prep Protocol (sWTA)

Slide compliments of Eric Hoffman, CNMC



All-Exon Example from CNMC
• Myotonic dystrophy

– Dominant disorder
– Trinucleotide repeat expansion (CTG)
– 3’ UTR of kinase gene

• Not a poly-glutamine disorder like all other dominant 
expansion disorders

– Dominant “RNA toxicity” disorder (Wang et al. 
1994) 

– Alters splicing “in trans” by sequestering splicing 
machinery

• Goal:: Define abnormal splicing from patient tissue on genome-wide scale
• Experimental Design:

– 10 Normal volunteers
– 10 Myotonic dystrophy Slide compliments of Eric Hoffman, CNMC



Clustering using the top 149 (top 50 from each 
pair-wise comparison) for Normal, Myo Dys, 

and Becker’s (DMD)

Normal
Myo Dys
Becker’s

Outliers?
Slide compliments of Eric Hoffman, CNMC





Titin isoform novex-3

Transcript Variant: This variant (novex-3) is the shortest
transcript and encodes the shortest protein. The last exon in the
novex-3 variant is nearly 7 kb and is not found in the N2-A
transcript. The novex-3 isoform, found in all striated muscle,
lacks the PEVK region and is a C-terminal truncation.

589 probe sets on Chip A for ENSG00000155657

Slide compliments of Eric Hoffman, CNMC



Clustering for 312 of the 589 probe sets 
for Titin isoform novex-3



Challenges for All-Exon Array 
Analyses

• What underlies chip/sample outliers?
– Trinucleotide repeat length
– Diagnosis
– Confounding variables (sex, age, ethnicity)

• Normalization of all three groups?
– Find alternative splicing of MyoDys vs Becker
– Then compare splicing patterns to normal

• Validation

Slide compliments of Eric Hoffman, CNMC



Proteomics and Metabalomics

• Waves of new data
• Real chemical action in peptides and 

metabolites, hope and potential for 
biomarker discovery is high

• Appropriate data pre-processing is 
absolutely critical, not to mention good 
experimental design (e.g. controversy over 
results from Petricoin and Liotta).



Common Technologies

• 2-D gels
• Mass spectrometry (2D and 3D, many 

flavors and acronyms, e.g. MALDI TOF, 
SELDI, QTOF, Electrospray, LC/MS)

• Using the preceding with dual labeling 
techniques such as ICAT

• Nuclear magnetic resonance (NMR)
• Antibody chips



Analysis Ideas

• Utilize best methods from:
- statistics
- econometrics / time series
- chemometrics
- image analysis, e.g. image alignment / registration

• Once metabolites or peptides are appropriately 
aligned and quantitated, apply similar workflow 
as with microarray data.

• Chemist ≠ Biologist



What We’d Love to See



What We Often See

Green: Cancer, Red: Normal

Left: Green in Front, Right: Red in Front



1/10 of Data from 1 LC/MS Sample



LC/MS Alignment/Clustering Problem



Recent Proteomics Review Paper

Listgarten, J. and Emili, A. (2005) Statistical and Computational 
Methods for Comparative Proteomic Profiling Using Liquid 
Chromatography-Tandem Mass Spectrometry, Molecular & 
Cellular Proteomics 4.4, 419-434.



eQTL

• Expression Quantitative Trait Loci analysis
• View gene or protein expression as a 

quantitative trait, and map it onto the genome.
• Computational complexity increases. e.g. 100K+ 

expression measurements by 500K SNPs
• Basic idea: Use K-means clustering for 

dimension reduction
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